Harold T. answered 11/06/20
MS in Engineering w/Math Minor and 25 Years Tutoring Experience
Problem:
Find y' x^2 + (y-x)^3 = 9 find an equation of the tangent line to the curve at (1,3)
Part 1: Solve for y'
y' = dy/dx
Given: x^2 + (y - x)^3 = 9
Differentiating gives:
2x dx/dx + 3*(y - x)^2 * (y - x)' = d9/dx
2x dx/dx + 3*(y - x)^2 * (y' - dx/dx) = 0
2x (1) + 3*(y - x)^2 * (y' - 1) = 0
2x + 3*(y - x)^2 * (y' - 1) = 0
Let's solve for y':
2x + 3*(y - x)^2 * (y' - 1) = 0
3*(y - x)^2 * (y' - 1) = -2x
(y' - 1) = -2x / [3*(y - x)^2]
y' = -2x / [3*(y - x)^2] + 1
y' = 1 - 2x / [3*(y - x)^2]
Part 2: Tangent Line:
point (1,3) = (x_0, y_0)
x = 1
y = 3
y' = 1 - 2(1) / [3*(3 - 1)^2]
y' = 1 - 2 / [3*(2)^2]
y' = 1 - 2 / [3*4]
m = 1 - 1 / 6
= 6/6 - 1 / 6
= 5/6
Equation of a Line:
y - y_0 = m(x - x_0))
y - 3 = 5/6(x - 1)
y = 5/6(x - 1) + 3
y = 5/6x -5/6 + 18/6
y = 5/6x + 13/6
y = 5/6x + 13/6