
Yefim S. answered 05/10/20
Math Tutor with Experience
We have ξ in quadrant IV. Now tan2ξ = 2tanξ/(1 - tan2ξ);
Because sinξ = - 4/5, then cosξ = sqrt(1 - sin2ξ) = sqrt(1 - 16/25) = sqrt(9/25) = 3/5 (cosξ > 0 in quadrant IV).
Now tanξ = sinξ/cosξ = (- 4/5)/(3/5) = - 4/3; tan2ξ = 2(- 4/3)/(1 - (-4/3)2) = (- 8/3)/(1 - 16/9)= (- 8/3)/(- 7/9) = 24/7.
Answer: tan2ξ = 24/7