Shin C. answered 04/07/20
UCLA Alumni | AP Calculus AB/BC & College Calculus Specialist
For those who wish to solve it by hand:
As stated in the video, expand r^2 = (4sinx - 2)^2 = 16sin^2(x) - 16sin(x) + 4
Therefore, A = 0.5integral(0, 2pi, 16sin^2(x) - 16sin(x) + 4, dx) - 0.5integral(pi/6, 5pi/6, 16sin^2(x) - 16sin(x) + 4, dx).
Use the fact that sin^2(x) = 0.5 - 0.5cos(2x). Resubstituting where appropriate would yield:
A = 0.5integral(0, 2pi, -8cos(2x) - 16sin(x) + 12, dx) - 0.5integral(pi/6, 5pi/6, -8cos(2x) - 16sin(x) + 12, dx).
A = (-2sin(2x) + 8cosx + 6x) from o to 2pi - (-2sin(2x) + 8cosx + 6x) from pi/6 to 5pi/6 = 35.525 (ans)
Sarah P.
thank you!04/08/20