(CLOSED) Chisom A. answered 02/16/20
Precalculus pro
From trigonometric identity for angle subtraction;
sin(A - B) = sin A*cos B - cos A*sin B
Since, sin A = 3/10 and cos B = √(13)/7; solve for cos A and sin B.
Using the Pythagorean identity;
sin2 A + cos2 A = 1 (1) {For angle A}
sin2 B + cos2 B = 1 (2) {For angle B}
From equation (1), solving for cos A;
cos2 A = 1 - sin2 A
cos A = √(1 - sin2 A)
Then,
cos A = √[1 - (3/10)2] = √[1 - (9/100)] = √(91/100) = √(91)/10
From equation (2), solving for sin B;
sin2 B = 1 - cos2 B
sin B = √(1 - cos2 B)
Then,
sin B = √[1 - (√(13)/7)2) = √[1 - (13/49)] = √(36/49) = 6/7
Finally,
sin(A - B) = sin A*cos B - cos A*sin B
= (3/10)*[√(13)/7] - [√(91)/10]*(6/7)
= [3√(13)]/70 - [6√(91)]/70
= (1/70)*[3√(13) - 6√(91)] NB: √(91) = √(13)*√(7)
= (1/70)*{3√(13) - 3√(13)*[2√(7)]}
sin(A - B) = [3√(13)/70]*[1 - 2√(7)] ~= -0.6631 (to 4 significant figures)