Thien D. answered 07/08/19
Duke MS Engineering Grad For Math Tutoring
The sum-to-product formula states that:
sin(a) + sin(b) = 2[sin((a+b)/2)cos((a-b)/2)].
Therefore,
sin(41°) + sin(19°) = 2[sin((41° + 19°)/2)cos((41° - 19°)/2)]
= 2[sin(30°)cos(11°)]
= 2[(1/2)cos(11°)]
= cos(11°)
Expressing this in terms of its compliment, sine ( sin(a) = cos(90°- a) )
cos(11°) = sin(90° - 11°) = sin(79°)
Therefore, A = 79°.