Dani M.

asked • 05/26/19

More help In Math please !? Explain ....



PART 1Quadrilateral <math style="font-family:'Times New Roman'" xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><mi>P</mi><mi>Q</mi><mi>R</mi><mi>S</mi></mstyle></math> with the following information:

  1. <math style="font-family:'Times New Roman'" xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><mo>&#x2220;</mo><mi>P</mi><mo>&#x2245;</mo><mo>&#x2220;</mo><mi>S</mi></mstyle></math>
  2. <math style="font-family:'Times New Roman'" xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><mi>m</mi><mo>&#x2220;</mo><mi>P</mi><mo>+</mo><mi>m</mi><mo>&#x2220;</mo><mi>Q</mi><mo>=</mo><mn>180</mn><mo>&#xB0;</mo></mstyle></math>
  3. <math style="font-family:'Times New Roman'" xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><mi>m</mi><mo>&#x2220;</mo><mi>R</mi><mo>+</mo><mi>m</mi><mo>&#x2220;</mo><mi>S</mi><mo>=</mo><mn>180</mn><mo>&#xB0;</mo></mstyle></math>
  4. <math style="font-family:'Times New Roman'" xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><menclose notation="top"><mi>P</mi><mi>S</mi></menclose><mo>&#x2245;</mo><menclose notation="top"><mi>Q</mi><mi>R</mi></menclose></mstyle></math>

Prove: <math style="font-family:'Times New Roman'" xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><mi>P</mi><mi>Q</mi><mi>R</mi><mi>S</mi></mstyle></math> is a rectangle. PART 2: Given the situation above, why is it not possible to prove that <math style="font-family:'Times New Roman'" xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><mi>P</mi><mi>Q</mi><mi>R</mi><mi>S</mi></mstyle></math> is a square?

Parallelogram P Q R S. Side P S and side Q R are marked with two ticks. Angle P and angle S are marked with one arc.

2 Answers By Expert Tutors

By:

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.