How to prove that $ \\sin \\angle{GAB}+\\sin \\angle{GBC}+\\sin \\angle{GCA} \\le \\frac{3}{2} $ for a triangle $ABC$ with centroid $G$?
Let $ G $ be the centroid of $ \ riangle ABC $ , such that $ \\measuredangle{GAB}=x,\\measuredangle{GBC}=y,\\measuredangle{GCA}=z $.
How do I prove that :
$$ \\sin x +\\sin y +\\sin z\\le \\frac{3}{2} $$