Mark M. answered 09/23/18
Tutor
4.9
(954)
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
Applying the MVT on the interval [xj-1 , xj], there is a number cj in the interval (xj-1 , xj) such that
f'(cj) = [f(xj) - f(xj-1)] / Δxj
Do this for each of the n intervals of the partition, P.
Then, ∑f'(cj)Δxj = ∑[(f(xj) - f(xj-1) / Δxj)Δxj]
= ∑(f(xj) - f(xj-1))
= [ f(x1) - f(x0)] + [f(x2) - f(x1)] + [f(x3) - f(x2)] + ... + [f(xn) - f(xn-1)]
= f(xn) - f(x0) = f(b) - f(a)
For each j from j = 1 to j = n, f'(cj) ≥ f'(mj)
So, ∑f'(mj)Δxj ≤ ∑f'(cj)Δxj = f(b) - f(a)
That is, L(f',P) ≤ f(b) - f(a)