How do I integrate 4x^2/(x^3-8) from 0 to 8

It is an improper integral and I know it diverges but I don't know why

i found u=x^3-8

but am getting stuck after that

How do I integrate 4x^2/(x^3-8) from 0 to 8

It is an improper integral and I know it diverges but I don't know why

i found u=x^3-8

but am getting stuck after that

Tutors, sign in to answer this question.

Or you can use a u substitution that you tried.

We have u = x^{3} - 8, and du = 3x^{2}dx so

∫ [4x^{2}/(x^{3 }- 8)] dx = (4/3) ∫ du/u = (4/3) ln|u| + C = (4/3) ln|x^{3
}- 8| + C

from 0 to 8 it diverges since at x = 2 you get (4/3) ln 0 → ∞ as said by Robert.

You can tell it diverges even before doing the integral, because at x = 2, the denominator of 4x^{2}/(x^{3} - 8) is zero. There's a vertical asymptote at x = 2 (and that makes it difficult to find the area under the curve!).

Remember that that's the point of integration - to find the area under a curve, and you can't find the area under a vertical asymptote. Looking at a graph of the function may help to see this:

∫4x^2/(x^3-8) dx

= ∫(4/3)/(x^3-8) d(x^3-8)

= (4/3)ln|x^3-8|, which approaches infinity as x --> 2.

So, the integral diverges.

Already have an account? Log in

By signing up, I agree to Wyzant’s terms of use and privacy policy.

Or

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Your Facebook email address is associated with a Wyzant tutor account. Please use a different email address to create a new student account.

Good news! It looks like you already have an account registered with the email address **you provided**.

It looks like this is your first time here. Welcome!

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Please try again, our system had a problem processing your request.

## Comments

Wow thanks for your help

That actually makes sense