Zack B.

asked • 11/14/17

Deriving functions Problem

Suppose that g is a real valued, differentiable function whose derivative g' satisfies the inequality |g'(x)|less than or equal to M for all x in R.
Show that if epsilon is greater than 0 is small enough, then the real valued function f defined by f(x)=x+epsilon*g(x) is one to one and onto.
Recall that a function f is said to be "one to one" if x sub 1 does not equal x sub 2 implies that f(x sub 1) does not equal f(x sub 2), and f is said to be "onto" if for every real number y, there is a real number x such that f(x) = y.

1 Expert Answer

By:

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.