Andy C. answered 09/02/17
Tutor
4.9
(27)
Math/Physics Tutor
A quick partial solution looks like this:
dy/y = dt/(t^2 - 16t + 60) <---- separation of variables
dy/y = dt/{(t - 10)(t-6)} <---- factors
ln|y| = 1/4 * ln | 4/(t-6)-1|+ c
<--- integration done by partial fraction decomposition as follows ---->
A/(t-10) + B/(t-6) = 1/((t-10)(t-6))
A(t-6) + B(t-10) = 1
At - 6A + Bt - 10B = 1
A+B = 0 ---> B = -A
-6A-10B = 1
6B - 10B = 1
B = -1/4 ---> A = 1/4
1/4/(t - 10) + -1/4/(t - 6)
1/4 ln(t-10) - 1/4 ln(t-6)
1/4 ln ( (t-10)/(t-6)) = 1/4 ( 1 - 4/t-6) )
<------------------------------------------------------------------>
Graphing the argument of the log 4/(t-6) - 1
shows positive values between 6 and 10
THe log blows up as t approaches 6