
Parviz F. answered 02/11/14
Tutor
4.8
(4)
Mathematics professor at Community Colleges
Prove : Tan ( A+ B ) = (Tan A + Tan B ) / ( 1 - Tan A Tan B) :
Tan ( A + B ) = Sin ( A + B) / Cos ( A +B)
( Sin A Cos B + Sin B Cos A ) / ( Cos A Co B - Sin A Sin B) ( 1)
Divide both sides of equation ( 1) by Cos A . Cos B
( Sin A Cos B + Sin B Cos A )/ (CosA Cos B ) / right side of ( 1)
Tan A + Tan B ( i)
Cos A Cos B - Sin A Sin B / Cos A . Cos B =
( 1 - Tan A Tan B ) ( ii )
Therefore:
Tan ( A + B ) = ( i) / ( ii )
= ( Tan A + Tan B )/ ( 1 - Tan A Tan B)
Tan ( 75) = (Tan 45° + Tan 30°) / ( 1 - Tan45°. Tan30°)
( 1 + √3 /3 ) /( 1 - √3/ 3) = 2 + √3
Tan 15 = ( Tan 45° - Tan30° ) / (1 + √3/ 3 )
= ( 1 - √3 / 3 )/ (1 + √3 /3 ) =
= ( 3 - √3 ) / ( 3 + √3 )
= 2 - √3
Nick Z.
02/11/14