
Steve S. answered 02/09/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
(i)
3 cos^2(2x) + 4 sin(2x) = 1 , 0° < x < 360°
Let t = 2x, then 0° < t < 720°, and
3 cos^2(t) + 4 sin(t) = 1
Substituting cos^2(t) = 1 - sin^2(t):
3(1 - sin^2(t)) + 4 sin(t) = 1
3 - 3 sin^2(t) + 4 sin(t) - 1 = 0
3 sin^2(t) - 4 sin(t) - 2 = 0
Let u = sin(t)
3 u^2 - 4 u - 2 = 0
u = (4 +- sqrt(16+24))/(2(3))
u = (2 +- sqrt(4+6))/3
u = (2 +- sqrt(10))/3
sin(t) =? (2 +- sqrt(10))/3
(2 + sqrt(10))/3 = 1.72075922005613 > 1 so this can’t be sin(t)
(2 - sqrt(10))/3 = -0.38742588672279
Let s = arcsin((2-sqrt(10))/3) = -22.79442508271453°
Because 0° < t < 720°,
then t = 180°-s, 360°+s, 180°-s+360°, 360°+s+360°,
and x = t/2 = 90°-s/2, 180°+s/2, 270°-s/2, 360°+s/2
or x = 101.3972125°, 168.6027875°, 281.3972125°, 348.6027875°
3 cos^2(2x) + 4 sin(2x) = 1 , 0° < x < 360°
Let t = 2x, then 0° < t < 720°, and
3 cos^2(t) + 4 sin(t) = 1
Substituting cos^2(t) = 1 - sin^2(t):
3(1 - sin^2(t)) + 4 sin(t) = 1
3 - 3 sin^2(t) + 4 sin(t) - 1 = 0
3 sin^2(t) - 4 sin(t) - 2 = 0
Let u = sin(t)
3 u^2 - 4 u - 2 = 0
u = (4 +- sqrt(16+24))/(2(3))
u = (2 +- sqrt(4+6))/3
u = (2 +- sqrt(10))/3
sin(t) =? (2 +- sqrt(10))/3
(2 + sqrt(10))/3 = 1.72075922005613 > 1 so this can’t be sin(t)
(2 - sqrt(10))/3 = -0.38742588672279
Let s = arcsin((2-sqrt(10))/3) = -22.79442508271453°
Because 0° < t < 720°,
then t = 180°-s, 360°+s, 180°-s+360°, 360°+s+360°,
and x = t/2 = 90°-s/2, 180°+s/2, 270°-s/2, 360°+s/2
or x = 101.3972125°, 168.6027875°, 281.3972125°, 348.6027875°
Which agree with given answers of:
101.4°, 168.6°, 281.4°, 348.6°
(ii)
sec(x) (tan(x) - 2) = 2 csc(x) , 0° < x < 360°
divide both sides by csc(x):
tan(x) (tan(x) - 2) = 2
tan^2(x) - 2 tan(x) - 2 = 0
Let u = tan(x)
u^2 - 2u - 2 = 0
Complete the square:
u^2 + 2(-1)u + (-1)^2 - (-1)^2 - 2 = 0
(u-1)^2 = 3
|u-1| = sqrt(3)
u = tan(x) = 1 +- sqrt(3)
1 + sqrt(3) = 2.73205080756888
1 - sqrt(3) = -0.73205080756888
v1 = arctan(1 + sqrt(3)) = 69.89609063898293°
v2 = arctan(1 - sqrt(3)) = -36.20602311300322°
x = v1, v2+180°, v1+180°, v2+360°
x = 69.89609063898293°, 143.79397688699678°, 249.89609063898293°, 323.79397688699678°
(ii)
sec(x) (tan(x) - 2) = 2 csc(x) , 0° < x < 360°
divide both sides by csc(x):
tan(x) (tan(x) - 2) = 2
tan^2(x) - 2 tan(x) - 2 = 0
Let u = tan(x)
u^2 - 2u - 2 = 0
Complete the square:
u^2 + 2(-1)u + (-1)^2 - (-1)^2 - 2 = 0
(u-1)^2 = 3
|u-1| = sqrt(3)
u = tan(x) = 1 +- sqrt(3)
1 + sqrt(3) = 2.73205080756888
1 - sqrt(3) = -0.73205080756888
v1 = arctan(1 + sqrt(3)) = 69.89609063898293°
v2 = arctan(1 - sqrt(3)) = -36.20602311300322°
x = v1, v2+180°, v1+180°, v2+360°
x = 69.89609063898293°, 143.79397688699678°, 249.89609063898293°, 323.79397688699678°
Which agree with given answers of:
69.9°, 143.8°, 249.9°, 323.8°
(iii)
sin(3x) (4 sin(3x) - 3 cos(3x)) = 4, 0 ≤ x ≤ π (pi)
4 sin^2(3x) - 3 sin(3x)cos(3x) = 4 (sin^2(3x) + cos^2(3x))
- 3 sin(3x)cos(3x) = 4 cos^2(3x)
Divide both sides by cos^2(3x)
- 3 tan(3x) = 4
tan(3x) = -4/3
t = 3x so if 0 ≤ x ≤ π then 0 ≤ t ≤ 3π
u = tan^(-1)(-4/3) = -0.927295218001611
3x = t = pi + u, 2pi + u, 3pi + u
x = t/3 = (pi + u)/3, (2pi + u)/3, (3pi + u)/3
x = 0.73809914519606, 1.78529669639266, 2.83249424758926
Which agree with these given answers: 0.738, 1.79, 2.83
but not with these:
π/6 = 0.5235987755983
π/2 = 1.5707963267949
5π/6 = 2.6179938779915