Since the car depreciates 20% each year, it is worth 80% of the previous year's value. The equation that shows the depreciated value is
A = A0(.8)t Therefore after two years the value of the car would be A = $35,000(.8)2 = $22,400. The number of years required for the car to be worth $3,000 can be found by solving the equation
$3,000 = $35,000(.8)t.
Divide both sides by 35,000 to get
.085714 = .8t Then take the log of both sides to get log(.085714) = log(.8)t = t log(.8) Now divide both sides by log (.8) to get t = log(.085714)/log(.8) = 11 years