
Patrick B. answered 11/25/20
Math and computer tutor/teacher
Is it (3/2)x or 3/(2x)? is it (4/5)x or 4/(5x)?
Problem A: assuming the latter
A) {3/(2x) - 4/(5x)}/ { 1/3 - 2/x } <--- common denominator is 30x;
multiplies everything by 30x
={3 *15 - 4*6}/ { 10x - 2*30 } <--- 30x/2x = 15; 30x/5x=6; 30x/3=10x ; 30x/x = 30
=(45-24)/(10x- 60) =
=21/(10x-60) = 21/ [ 10(x-6)]
assuming the former:
A) {(3/2)x - (4/5)x } / {(1/3) - (2/x)} <-- common denominator again is 30x;
what a co-incidence! multiplies everything by 30x
{ 3*15x*x - 4*6x*x}/ { 10x - 2*30} <-- 30x/2=15x; 30x/5 = 6x; 30x/3 = 10x; 30x/x= 30
{ 45x^2 - 24x^2} / (10x - 60) =
21x^2 / (10x-60) = 21x^2 / [10(x-6)]
notice the answers are almost the same; it is because of the x in the denominator in the
first version of the problem
Problem B:
Again, is it (1/x) -2 or 1/(x-2) ??
is it (5/x) + 2 or 5/(x+2)???
assuming the latter:
B: [1/(x-2) - 3 ] / [ 5/(x+2) + 3] <--- common denominator is (x+2)(x-2)=x^2-4; multiplies EVERYTHING
by (x+2)(x-2)=x^2-4
[x+2 - 3(x^2-4)]/ [ 5(x-2) + 3(x^2-4)] <--- x-2 cancels in the numerator's left fraction;
x+2 cancels in the denominator's left fraction;
[x+2-3x^2+12]/[5x-10 + 3x^2-12]
(-3x^2+x+14)/(3x^2+5x-22)=
-(3x^2-x-14)/(3x^2+5x-22) =
-(3x - 7)(x +2 ) /(3x + 11)(x - 2 ) <--- no common factors :-(
assuming the former:
the problem simplifies:
[(1/x)-5] /[ (5/x) + 5] <-- common denominator is x
(1 -5x)/(5 + 5x) <--- 1/x*x=1; 5/x*x = 5
(1-5x)/(5(1+x)) <--- again, no common factors
C) remainder theorem says, the remainder is, for x=1 and x-1 as a factor, is
3(1)^3 + 2(1)^2 - 4(1) +2 = 3+2-4+2 = 3, so x=1 is NOT a solution
3x^2 + 5x +1
____________________________
x-1 | 3x^3 + 2x^2 - 4x + 2
3x^3 - 3x^2
-------------------------
5x^2 - 4x
5x^2 - 5x
-----------------------
x + 2
x - 1
--------
3
So 3x^2 + 5x + 1 + 3/(x-1) =
[(3x^2+5x+1)(x-1) + 3 ] /(x-1) =
[3x^3 + 5x^2 + x - 3x^2 - 5x - 1+3] / (x-1)
[3x^3 + 2x^2 - 4x + 2]/(x-1) <--- same problem, so it checks
D) remainder theorem says, for x=-2 and x-2 as a factor, is
4(-2)^3 - 2(-2) = 4(-8) + 4 = -32+4 = -28, so x=-2 is NOT a solution
4x^2 -8x+14
_____________________
x+2 | 4x^3 + 0x^2- 2x + 0
4x^3 + 8x^2
-------------------------
-8x^2 - 2x
-8x^2 -16x
-------------------
14x
14x + 28
-----------
-28
(x+2)(4x^2-8x+14)-28 = 4x^3 - 8x^2 + 14x
8x^2 -16x + 28-28
4x^3-2x which is the original dividend, so it checks