Mark M. answered 12/13/24
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
Δx = (2 - (-1))/n = 3/n
Subinterval right endpoints are x1 = -1 + 3/n, x2 = -1 + 2(3/n). x3 = -1 + 3(3/n), ... xn = -1 + n(3/n) = 2
Right Riemann Sum for n: ∑(I=1 to n) [2 - (-1+ 3i/n)2 + (-1 + 3i/n)] (3/n)
Area = limit as n approaches infinity of the sum above = ∫(-1 to 2) [2 - x2 + x] dx