Hi Chance,
For i) y = (ex + 1/x)ln(x2 - e2x).
Use the product rule: dy/dx = d(uv)/dx = u(dv/dx) + v(du/dx).
Let u = (ex + 1/x) and v = ln(x2 - e2x).
dy/dx = u(d[ln((x2 - e2x)]/dx) + v(d[(ex + 1/x)]/dx).
Let's evaluate the second term first as this is simpler.
u(d[ln((x2 - e2x)]/dx) + v(ex - (1/x2)).
To deal with the first term, we need to use the chain rule: (dy/dx)=(dy/dz)(dz/dx).
Let z = (x2 - e2x).
d[ln((x2 - e2x)]/dx = (dy/dz)(dz/dx) = (d[ln(z)]/dz)(d[x2 - e2x]/dx) =
(1/z)*(2x - 2e2x).
Plug this back into: u(d[ln((x2 - e2x)]/dx) + v(ex - (1/x2)). --> u[(1/z)*(2x - 2e2x)] + v(ex - (1/x2)).
Replace z with (x2 - e2x).
u[(1/(x2 - e2x))*(2x - 2e2x)] + v(ex - (1/x2)).
Replace u = (ex + 1/x) and v = ln(x2 - e2x).
dy/dx = [(ex + 1/x)*(2x - 2e2x)/(x2 - e2x)] + [(ln(x2 - e2x))*(ex - (1/x2))].