Agustin G. answered 03/22/24
Effective English Tutor Specializing in Reading and Test Prep Skills
(a) For a function $f(x) = 1$ defined on $[0, \pi]$ we can compute the Fourier sin series coefficients using the formula:
$$B_n(f) = \frac{2}{L}\int_0^L f(x)\sin{\left(\frac{n\pi x}{L}\right)}dx$$
For $f(x) = 1$, $[0, \pi]\Rightarrow L = \pi - 0 = \pi$, we get
\begin{align*}
B_n(1) &= \frac{2}{\pi}\int_0^\pi (1)\sin{\left(\frac{n\pi x}{\pi}\right)}dx, \\
&= \frac{2}{\pi}\int_0^\pi\sin{nx}dx, \\
&= \frac{2}{\pi}\left.\left[-\frac{1}{n}\cos{nx}\right]\right|_0^\pi, \\
&= \frac{2}{n\pi}\left[-\cos{n\pi} + \cos{0}\right], \\
&= \boxed{\frac{2}{n\pi}\left[1-\cos{n\pi}\right].}
\end{align*}
(b)
(c) For a function $g(x) = x$ defined on $[0, \pi]$ we can compute the Fourier sin series coefficients using the formula:
$$B_n(g) = \frac{2}{L}\int_0^L g(x)\sin{\left(\frac{n\pi x}{L}\right)}dx$$
For $g(x) = x$, $[0, \pi]\Rightarrow L = \pi - 0 = \pi$, we get
\begin{align*}
B_n(1) &= \frac{2}{\pi}\int_0^\pi (x)\sin{\left(\frac{n\pi x}{\pi}\right)}dx, \\
&= \frac{2}{\pi}\int_0^\pi x\sin{nx}dx, \\
&= \frac{2}{\pi}\left.\left[\frac{\sin{nx}-nx\cos{nx}}{n^2}\right]\right|_0^\pi, \\
&= \boxed{\frac{2}{\pi}\left[\frac{\sin{n\pi} - n\pi\cos{n\pi}}{n^2}\right].}
\end{align*}
(d)
Hope this helps!