
Metin E. answered 03/18/24
MS in Statistics, taught Finite Math for 2 years at community college
We will use integration by parts. Recall the formula for it:
∫ u dv = uv - ∫ v du
Let u = (1/3)x3 + 2x2 + 1 and dv = e-x/2 dx.
Then du = (x2 + 4x)dx and v = -2e-x/2.
∫ e-x/2 [(1/3)x3 + 2x2 + 1] dx
= -2e-x/2 [(1/3)x3 + 2x2 + 1 ] - ∫ -2e-x/2 (x2 + 4x) dx
= e-x/2 [(-2/3)x3 - 4x2 - 2] + ∫ 2e-x/2 (x2 + 4x) dx
= e-x/2 [(-2/3)x3 - 4x2 - 2] + ∫ e-x/2 (2x2 + 8x) dx
We use integration by parts one more time.
Let u = 2x2 + 8x and dv = e-x/2 dx.
Then du = (4x + 8)dx and v = -2e-x/2.
∫ e-x/2 [(1/3)x3 + 2x2 + 1] dx
= e-x/2 [(-2/3)x3 - 4x2 - 2] + ∫ e-x/2 (2x2 + 8x) dx
= e-x/2 [(-2/3)x3 - 4x2 - 2] + (-2e-x/2)(2x2 + 8x) - ∫ -2e-x/2 (4x + 8) dx
= e-x/2 [(-2/3)x3 - 4x2 - 2] + e-x/2(-4x2 - 16x) + ∫ 2e-x/2 (4x + 8) dx
= e-x/2 [(-2/3)x3 - 4x2 - 2 - 4x2 - 16x] + ∫ e-x/2 (8x + 16) dx
= e-x/2 [(-2/3)x3 - 8x2 - 16x - 2] + ∫ e-x/2 (8x + 16) dx
We use integration by parts one more time.
Let u = 8x + 16 and dv = e-x/2 dx.
Then du = 8 dx and v = -2e-x/2.
∫ e-x/2 [(1/3)x3 + 2x2 + 1] dx
= e-x/2 [(-2/3)x3 - 8x2 - 16x - 2] + ∫ e-x/2 (8x + 16) dx
= e-x/2 [(-2/3)x3 - 8x2 - 16x - 2] + (-2e-x/2)(8x + 16) - ∫ (-2e-x/2)(8) dx
= e-x/2 [(-2/3)x3 - 8x2 - 16x - 2] + (e-x/2)(-16x - 32) + ∫ (2e-x/2)(8) dx
= e-x/2 [(-2/3)x3 - 8x2 - 16x - 2 - 16x - 32] + 16 ∫ e-x/2 dx
= e-x/2 [(-2/3)x3 - 8x2 - 32x - 34] + 16(-2e-x/2) + C
= e-x/2 [(-2/3)x3 - 8x2 - 32x - 34] -32 e-x/2 + C
= e-x/2 [(-2/3)x3 - 8x2 - 32x - 34 - 32] + C
= e-x/2 [(-2/3)x3 - 8x2 - 32x - 66] + C
If we factor out a (-2/3), the answer would look a little nicer. In that case, we get:
(-2/3)e-x/2 [x3 + 12x2 + 48x + 99] + C
because
(-2/3) * 12 = - 8
(-2/3) * 48 = -32
(-2/3) * 99 = -66
Detailed explanation of ∫ e-x/2 dx:
We use u-substitution.
Let u = -x/2.
Then du = (-1/2)dx
du = (-1/2)dx ⇒ -2du = (-2)(-1/2)dx ⇒ -2du = dx
∫ e-x/2 dx = ∫ eu (-2du) = -2 ∫ eu du = -2eu + C = -2e-x/2 + C