Mark M. answered 01/12/24
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
limx→0+ (sinx)x has the indeterminate form 00.
Let y = (sinx)x. Then lny = ln(sinx)x = x ln(sinx)
limx→0+ lny = limx→0+ (x ln(sinx)) = limx→0+[ln(sinx) / (1/x)] which has the form -∞/∞
Applying L'Hopital's Rule, the limit on the line above is equivalent to:
limx→0+ [ ((cosx) / (sinx)) / (-1/x2)] = limx→0+[ (-x/sinx)(x)(cosx)] = (-1)(0)(1) = 0
So, limx→0+(lny) = 0
Therefore, limx→0+(sinx)x = limx→0+(y) = limx→0+(elny) = e0 = 1