The common ratio of a geometric progression is 0.99. Express the sum of the first 100 terms as a percentage of the sum to infinity, giving your answer correct to 2 significant figures.
Raymond B.
answered 12/09/23
Math, microeconomics or criminal justice
sn= a(1-r^n)/(1-r)
s100=a(1-.99^100)/(1-.99)=about a(.634)/.01= 63.4a
sn = a/(1-r) for n=infinity
=a/(1-.99)=a/.01=100a
s100/sn= .634 =about 63%
Still looking for help? Get the right answer, fast.
OR
Find an Online Tutor Now
Choose an expert and meet online.
No packages or subscriptions, pay only for the time you need.
¢
€
£
¥
‰
µ
·
•
§
¶
ß
‹
›
«
»
<
>
≤
≥
–
—
¯
‾
¤
¦
¨
¡
¿
ˆ
˜
°
−
±
÷
⁄
×
ƒ
∫
∑
∞
√
∼
≅
≈
≠
≡
∈
∉
∋
∏
∧
∨
¬
∩
∪
∂
∀
∃
∅
∇
∗
∝
∠
´
¸
ª
º
†
‡
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
Ô
Õ
Ö
Ø
Œ
Š
Ù
Ú
Û
Ü
Ý
Ÿ
Þ
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
ø
œ
š
ù
ú
û
ü
ý
þ
ÿ
Α
Β
Γ
Δ
Ε
Ζ
Η
Θ
Ι
Κ
Λ
Μ
Ν
Ξ
Ο
Π
Ρ
Σ
Τ
Υ
Φ
Χ
Ψ
Ω
α
β
γ
δ
ε
ζ
η
θ
ι
κ
λ
μ
ν
ξ
ο
π
ρ
ς
σ
τ
υ
φ
χ
ψ
ω
ℵ
ϖ
ℜ
ϒ
℘
ℑ
←
↑
→
↓
↔
↵
⇐
⇑
⇒
⇓
⇔
∴
⊂
⊃
⊄
⊆
⊇
⊕
⊗
⊥
⋅
⌈
⌉
⌊
⌋
〈
〉
◊