
Dayv O. answered 11/20/23
Caring Super Enthusiastic Knowledgeable Pre-Calculus Tutor
know 1+2+...+n=[n(n+1)]/2
so,,, 1+2+...+100=50*101
E(100)=2+4+...+100=2(1+2+...+50)=50*51
O(100)=1+3+...+99=[1+2+...+100]-[2+4+...+100]=50*101-50*51=50*50
E(99)=49*50
O(99)=50*50
E(98)=49*50
O(98)=49*49
E(97)=48*49
O(97)=49*49
E(96)=48*49
O(96)=48*48
for O(1)+O(3)+...+O(100)
have X(100)=2*(12+22+...+502)=2*[50*51*101}/6,
,,,,,formula [n*(n+1)*(2n+1)]/6=12+22+...+n2
for Y(100)
Y(100)=2*(1*2+2*3+4*5+5*6+...+49*50)+50*51
=2*([12+1]+[22+2]+[32+3}+...[492+49])+50*51
Y(100)=2*[(49*50*99)/6]+2*[(49*50)/2]+50*51