William C. answered 10/08/23
Experienced Tutor Specializing in Chemistry, Math, and Physics
s(t) = √[(1 + sin t)/(1 + cos t)] = [(1 + sin t)/(1 + cos t)]½
Below I'm going to use x1/2 to represent √x (they mean the same thing).
Evaluating s'(t) using the power rule followed by the chain rule
s'(t) = ½[(1 + sin t)/(1 + cos t)]–1/2 × d[(1 + sin t)/(1 + cos t)]/dt
= ½[(1 + cos t)/(1 + sin t)]1/2 × d[(1 + sin t)/(1 + cos t)]/dt
Evaluating d[(1 + sin t)/(1 + cos t)]/dt using the quotient rule
d[(1 + sin t)/(1 + cos t)]/dt = [(1 + cos t)(cos t) – (1 + sin t)(–sin t)]/(1 + cos t)2 =
[(1 + cos t)(cos t) + (1 + sin t)(sin t)]/(1 + cos t)2 =
(cos t + cos2t + sin t + sin2t)/(1 + cos t)2 = (1+ cos t + sin t)/(1 + cos t)2
s'(t) = ½[(1 + cos t)/(1 + sin t)]1/2 × (1+ cos t + sin t)/(1 + cos t)2 =
[(1 + cos t)1/2(1+ cos t + sin t)]/[2(1 + sin t)1/2(1 + cos t)2] =
(1+ cos t + sin t)/[2(1 + sin t)1/2(1 + cos t)3/2]
Answer
s'(t) = (1+ cos t + sin t)/[2(1 + sin t)1/2(1 + cos t)3/2]