Joanne C. answered 07/13/23
Enthusiastic Math and Science Tutor with over 20+ years of experience
Hi Jerry...
Tap A takes 6 minutes to fill a tank and Tap B takes 9 minutes to fill the same tank. Pipe C can empty the tank in 15 minutes. How long will it take to fill up the tank if the pipe is in use when both taps are turned on?
Given:
A = 6 min to fill tank
B = 9 min to fill tank
C = 15 min to empty tank
Let V=Volume of the tank
Fill Rate x Time = Volume Empty Rate x Time = Volume
Ra x 6min = V Ra = V/6min
Rb x 9 min = V Rb = V/9 min
Rc x 15 min = V Rc = V/15min
Find: The question to answer is when the tank is being filled and emptied through use, how much time will it take to Fill up.
Things to understand:
The volume is the same for all 3 equations above.
The time taken to fill the tank will be the same.
Using Fill Rate x time = Volume
A and B are filling up the tank, C is emptying it
So you will add A and B and subtract C
Ra x t + Rb x t - Rc x t = V
t x (Ra + Rb - Rc) = V
t x (V/6min + V/9min - V/15min) = V
t V x (1/6min + 1/9min - 1/15min) = V
t= 1/ (1/6 + 1/9 - 1/15)
t = 4.74 min
Hope this helps!
Let me know if you have more questions :)
Jerry T.
Thanks07/13/23