Raymond B. answered 05/08/23
Math, microeconomics or criminal justice
integral= y(y^2-3c)/3sqr(c)+C
integral of (y^2-c)/sqrc dy
=y = (1/sqrc)integral of (y^2 -c)dy
= (1/sqrc) integral of y^2dy - (c)integral of 1dy
=(1/sqrc)(y^3/3) -cy + C
=y^3/3sqrc - 3ycsqrc/3sqrc + C
y= y(y^2 -3c)/3sqrc + C
if y= sqr(c)(cosh(x+D)/sqr(c)
then y=cosh(x+D) and
y'= sinh(x+D) which then must =dy/dx= (y^2-c)/sqr(c)
= (cosh^2(x+D)-c)/sqr(c)
= cosh^2(x+D)/sqr(c) - sqr(c)
=(1 - sinh^2(x+D))/sqr(c) - sqr(c)
= 1/sqr(c) - sqr(c) - sinh^2(x+D)/sqr(c)
= (1-c)/sqr(c) - sin^2(x+D)/sqr(c)
= (1-c-sin^2(x+D))/sqr(c)