AJ L. answered 05/07/23
Patient and knowledgeable Calculus Tutor committed to student mastery
F(x,y,y') = y√[1+(y')2]
∂F/∂y = √[1+(y')2]
∂F/∂y' = yy'/√[1+(y')2]
As the function F is independent of the variable x, then by the Beltrami identity, the Euler-Lagrange equation is equivalent to y'Fy' - F = C:
y'Fy' - F = C
y'(yy'/√[1+(y')2]) - y√[1+(y')2] = C
y(y')2/√[1+(y')2]) - y√[1+(y')2] = C
y(y')2/√[1+(y')2] - y[1+(y')2]/√[1+(y')2] = C
(y(y')2-y[1+(y')2])/√[1+(y')2] = C
[y(y')2-y-y(y')2]/√[1+(y')2] = C
-y/√[1+(y')2] = C
-y = C√[1+(y')2]
y2 = C[1+(y')2]
y2 = C + C(y')2
y2 - C = C(y')2
(y2-C)/C = (y')2
y' = ±√[(y2-C)/C]
Hope this helped!

AJ L.
05/08/23
Ashley P.
Thank you so much! This explains how part (b) came up.05/08/23