
Juan M. answered 04/30/23
Professional Math and Physics Tutor
a) We start by taking the Taylor series expansion of ui about a point xi --> yi where (xi - yi)Fi = 0:
ui(xi) = ui(yi) + (xi - yi)ui'(yi) + O((xi - yi)^2)
where ui'(yi) is the derivative of ui with respect to xi evaluated at yi.
From the given flow field, we have:
ui(xi) = Fj[δij/xi + xi xj/xi^3]
Differentiating with respect to xi, we get:
ui'(xi) = -Fj[δij/xi^2 - 3xi xj/xi^4]
Evaluating at yi, we have:
ui'(yi) = -Fj[δij/yi^2 - 3yi yj/yi^4]
Substituting these values into the Taylor series expansion, we get:
ui(xi) - ui(yi) = -Fj[(xi - yi)δij/yi^2 - 3(xi - yi)yi yj/yi^4] + O((xi - yi)^2)
Simplifying, we get:
ui(xi) - ui(yi) = -Fj[(xi - yi)/yi^2]δij + Fj[3(xi - yi)/yi^3]yi yj + O((xi - yi)^2)
Therefore, the local linear velocity field is:
ui(xi) - ui(yi) = -Fj[(xi - yi)/yi^2]δij + Fj[3(xi - yi)/yi^3]yi yj
b) The rate of strain tensor is given by:
εij = (1/2)(∂ui/∂xj + ∂uj/∂xi)
Substituting the given flow field, we get:
εij = (1/2)Fk[δik/ xj x + δjk/ xi x - 2xixj/x^4]
Since the flow is symmetric with respect to xi and xj, εij = εji. Therefore, we have:
εij = (1/2)Fk[δik/ xj x + δjk/ xi x - 2xixj/x^4]
The vorticity tensor is given by:
ωij = (1/2)(∂ui/∂xj - ∂uj/∂xi)
Substituting the given flow field, we get:
ωij = (1/2)Fk[(δik/xj - δjk/xi) + 2xixj/x^4]
Again, since the flow is symmetric with respect to xi and xj, ωij = -ωji. Therefore, we have:
ωij = (1/2)Fk[(δik/xj - δjk/xi) + 2xixj/x^4]