AJ L. answered 04/18/23
Patient and knowledgeable Calculus Tutor committed to student mastery
∫∫R (x+ln(y))dA = ∫13∫710 (x+ln(y))dydx
First, let's determine ∫710 (x+ln(y))dy:
∫710 (x+ln(y))dy
= xy+yln(y)-y [7,10]
= (10x+10ln(10)-10) - (7x+7ln(7)-7)
= 3x+10ln(10)-7ln(7)-3
Next, we determine ∫13 3x+10ln(10)-7ln(7)-3 dx:
∫13 3x+10ln(10)-7ln(7)-3 dx
= (3/2)x2+10ln(10)x-7ln(7)x-3x [1,3]
= (3/2)(3)2+10ln(10)(3)-7ln(7)(3)-3(3) - (3/2)(1)2+10ln(10)(1)-7ln(7)(1)-3(1)
= (27/2 + 30ln(10) - 21ln(7) - 9) - (3/2 + 10ln(10) - 7ln(7) - 3)
= 12 + 20ln(10) - 14ln(7) - 6
= 6 + 20ln(10) - 14ln(7)
It looks like your mistake was only in the last term. I'm guessing you forgot to change signs when getting your result.
Hope this helped!