
Yefim S. answered 04/07/23
Math Tutor with Experience
By property of angle bisector AD/DC = 8/6 = 4/3;
By cosine law cos(B/2) = (82 + 62 - AD2)/(2·8·6) = (62 + 62 - DC2)/(2·6·6); (100 - AD2)/96 = (72 - DC2)/72;
3(100 - AD2) = 4(72 - DC2); 300 - 3AD2 = 288 - 4DC2; 3AD2 - 4DC2 = 12; 3AD = 4DC; DC = 3AD/4;
3AD2 - 4(9AD2/16) = 12; 3AD2 - 9AD2/4 = 12; 12AD2 - 9AD2 = 48; AD2 = 16; AD = 4; DC = 3. SO, AC = 7.
Now, if we continue median AE and take EF + AE we get parallelogram ABFC. Using property of sides and diagonals of parallelogram we get: (2AE)2 + 62 = 2·82 + 2·72; AE2 = ((128 + 98 - 36)/4 = 190/4;
AE = √190/2