Joel L. answered 04/06/23
MS Mathematics coursework with 20+ Years of Teaching Experience
I'll just help you with FRQ 2 (a):
Given: g(x) = 2x + ∫0x f(t) dt.
(a) Compute for g(5). Find g'(x) and evaluate g'(3)
First solve ∫05 f(t) dt.
∫05 f(t) dt = ∫02 f(t) dt + ∫25 f(t) dt
Using the piecewise function f(x):
∫05 f(t) dt = ∫02 4 dt + ∫25 (10 - 3t) dt
= [ 4t ]02 + [ 10t - (3/2)t2 ]25
= 4(2) +10(5) + (3/2)(5)2 - 10(2) - (3/2)(2)2
= 8 + 50 + (3/2)(25) - 20 - 6
= 32 + 75/2
= 64/2 + 75/2
= 139 / 2 = 69.5
So to solve g(5):
g(5) = 2(5) + ∫05 f(t) dt
g(5) = 10 + 69.5
g(5) = 79.5
g'(x) = 2 + (d/dx) ∫0x f(t) dt
Using the fundamental theorem of calculus:
g'(x) = 2 + f(x)
g'(-3) = 2 + f(-3) = 2+ (4-(-3+3))1/2
g'(-3) = 4