Raymond B. answered 11/22/22
Math, microeconomics or criminal justice
f(x) = sin5x-10x +3
f(0)=sin0 -10(0)+3 = 3
f'(x)=5cos5x-10
f'(0)=5cos0 -10 =5(1)-10=-5
f"(x)=-25sin5x
f(pi/2)=sin(5pi/2)-10pi/2 + 3
=1 -10pi/2 + 3
=4-5pi
Raymond B. answered 11/22/22
Math, microeconomics or criminal justice
f(x) = sin5x-10x +3
f(0)=sin0 -10(0)+3 = 3
f'(x)=5cos5x-10
f'(0)=5cos0 -10 =5(1)-10=-5
f"(x)=-25sin5x
f(pi/2)=sin(5pi/2)-10pi/2 + 3
=1 -10pi/2 + 3
=4-5pi
Hi Jay!
f''(x) = -25sin(5x)
First step is to find f'(x).
f'(x) = ∫f''(x)
f'(x) = ∫(-25sin(5x))dx du du
f'(x) = -25∫sin(5x)dx let u = 5x, then --- = 5 or ----- = dx
dx 5
du
f'(x) = -25∫sin(u) ---
5
f'(x) = -5∫sin(u)du
f'(x) = -5 [ -cos(u) ] + C
f'(x) = -5 [ -cos(5x)] + C
but f'(0) = -5, so
5cos(5*0) + C = -5
5(1) + C = -5
C = -10
f'(x) = 5cos(5x)-10
Now, find f(x)
f(x) = ∫f'(x)
f(x) = ∫[5cos(5x)-10]dx
f(x) = 5∫cos(5x)dx - 10∫dx
du du
let u = 5x, then ---- = 5 or ---- = dx
dx 5
du
f(x) = 5∫cos(u) --- - 10x + C
5
f(x) = ∫cos(u)du - 10x + C
f(x) = sin(u) - 10x + C
f(x) = sin(5x) - 10x + C
We're told f(0) = 3, so
sin(5*0) - 10(0) + C = 3
0 - 0 + C = 3
C = 3
f(x) = sin(5x) - 10x + 3
Now, to find f(π/2)
f(π/2) = sin(5*π/2) - 10(π/2) + 3
= 1 - 5π + 3
= 4 - 5π
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.