Raymond B. answered 11/07/22
Math, microeconomics or criminal justice
convert zeros to factors
change the sign & stick an x in front
x=3, (x-3)
x=1, (x-1)
x=i, (x-i)
imaginary zeros come in conjugate pairs
x=-i, (x+i)
multiply the factors together, with an unknown coefficient
f(x) = a(x-3)(x-1)(x-i)(x+i)
= a(x^2-4x+3)(x^2+1)=-12
replace x with 0
f(0)= a(3)(1) = -12
solve for a
a = -12/3 =- 4
f(x) = -4(x^2-4x+3)(x^2+1)
f(x)= -4(x^4-4x^3+4x^2-4x+3)
f(x) = -4x^4 +16x^3 -16x^2 +16x -12 is a 4th degree polynomial function with real coefficients & the given zeros
degree = the largest exponent= 4 = the leading term's exponent
check the answer, plug in the zeros
f(0)=-12
f(1)=-4+16-16+16-12=0
f(3)=-4(3^4)+16(3)^3)-16(3^2)+16(3)-12
= -4(81) + 16(27) -16(9) + 16(3) -12
= -324 +21(16) -12
= -324+ 126+210 -12
=-324 +336-12
= 0
f(i)=-4(1) + 16(-i) -16(-1) +16(i) -12
= -4 -16i +16+16i -12
=0
f(-i)=-4(1) +16(-i)+16 -16(-i)-12
= -4 -16i +16+16i -12
=-4+16-12
=0