1. T(t) = TA + (T0 − TA) b^t ---> T(t) - TA = (T0 − TA) b^t ---> (T(t) - TA) / (T0 − TA) = b^t, so finally:
b = [ (T(t) - TA) / (T0 − TA) ]^(1 / t)
2. b = [ (T(t) - TA) / (T0 − TA) ]^(1 / t) = [ (170°F - 70°F) / (220°F − 70°F) ]^(1 / 10 minutes)
b = [ (100°F) / (150°F) ]^(0.1) = (2/3)^(0.1) = 0.96026
3. T(t) = TA + (T0 − TA) b^t ---> T(t) - TA = (T0 − TA) b^t ---> (T(t) - TA) / (T0 − TA) = b^t, so finally:
t = log_b[ (T(t) - TA) / (T0 − TA) ]
4. [ (T(t) - TA) / (T0 − TA) ] = log_0.96026[ (100°F - 70°F) / (220°F − 70°F) ]
t = log_0.96026[ (30°F) / (150°F) ] = log_0.96026(1/5) = 39.689 minutes = 40 minutes
5. b = [ (T(t) - TA) / (T0 − TA) ]^(1 / t) = [ (100°F - 350°F) / (32°F − 350°F) ]^(1 / 20 minutes)
b = [ (-250°F) / (−318°F) ]^(1 / 20 minutes) = (250/318)^(0.05) = 0.98804
6. t = [ (T(t) - TA) / (T0 − TA) ] = log_0.98804[ (200°F - 350°F) / (32°F − 350°F) ]
t = log_0.98804[ (-150°F) / (−318°F) ] = log_0.98804(150/318) = 62.45 minutes = 63 minutes
7. b = [ (T(t) - TA) / (T0 − TA) ]^(1 / t) = [ (180°F - 70°F) / (200°F − 70°F) ]^(1 / 10 minutes)
b = [ (110°F) / (130°F) ]^(1 / 10 minutes) = (11/13)^(0.1) = 0.98343, so we have that
t (longer to wait) = log_b[ (T(t) - TA) / (T0 − TA) ] - 10 minutes
t = log_0.98343[ (120°F - 70°F) / (200°F − 70°F) ] - 10 minutes
t = log_0.98343[ (50°F) / (130°F) ] - 10 minutes = log_0.98343(5/13) - 10 minutes
t = 57.186 minutes - 10 minutes = 58 minutes - 10 minutes = 48 minutes