The flux of F across the S is
∫∫S F • dS = ∫∫D F(R(u,v)) • Ru × Rv du dv
where D is the annulus in the (u,v)-plane determined by inequalities 1 ≤ u2 + v2 ≤ 4. Compute
Ru × Rv = <2, 0, -2u> × <0, 4, 0> = <8u, 0, 8>
F(R(u,v)) = F(2u, 4v, -u2) = <8u, u2, 8v2>
Then
F(R(u,v)) • Ru × Rv = <8u, u2, 8v2> • <8u, 0, 8>
...............................= (8u)(8u) + u2(0) + (8v2)(8) = 64u2 + 64v2
................................= 64(u2 + v2)
and hence ∫∫D F(R(u,v)) • Ru × Rv du dv = 64 ∫∫D (u2 + v2) du dv. Using polar coordinates we find
64 ∫∫D (u2 + v2) du dv = 64 ∫12 ∫02π r2 r dθ dr
...................................= 64 ∫12 2π r3 dr = 32π ∫12 4r3 dr
...................................= 32π (r4)|12
...................................= 32π (24 - 14)
...................................= 480π
Thus, the flux across S is 480π.


Eugene E.
05/20/22
Luke J.
Slight edit, wouldn't the radius be from 1 to 2? since it would be u^2 + v^2 = 2^2? Otherwise, flawless execution!05/20/22