
Yefim S. answered 05/17/22
Math Tutor with Experience
a) dM/dx = 2y3- 6xz; M = ∫(2y3 - 6xz)dx = 2y3x - 3x2z + h(y,z);
dM/dy = 6y2x + dh/dy = 6xy2 - 4y; dh/dy = -4y; h = - 2y2 + f(z)
M = 2y3x - 3x2z - 2y2 + f(z); dM/dz = - 3x2 + f'(z) = 4 - 3x2; f = 4z + C
M(x,y,z)= 2y3x - 3x2z - 2y2 + 4z + C.
So M(x, y, z) is potential of this vector field.
W = ∫ABF•dr = M(B) - M(A) = (32 + 36 - 8 - 12 + C) - (0 + 3 - 0 - 4 + C) = 45
b) A(1,0,-1) and P(1,2,-1); AP = <0,2,0>; (x - 1)/0 = y/2 = (z + 1)/0 = t; x = 1; y = 2t; z = - 1; 0 ≤ t ≤1
W1 = ∫APF•dr = ∫01(6·4t2- 8t)·2dt = (8t3 - 4t2)01 = 4
P(1,2,-1) and B(2,2,-3): PB = <1, 0, -2>; (x - 1)/1 = (y - 2)/0 = (z + 1)/-2 = s; x = s + 1; y = 2; z = -2s - 1
0 ≤ s ≤1
W2 = ∫PBF•dr = ∫01[16 - 6(s + 1)(-2s -1)]ds + [4 - 3(s + 1)2](-2)ds = ∫01(16 + 12s2 + 18s + 6 - 8 + 6s2 + 12s + 6)ds = ∫01(18s2+ 30s + 20)ds = (6s3 + 15s2 + 20s)01 = 6 + 15 + 20 = 41
W = W1 + W2 = 45