integral of
(3x-2)/(x-1)
=integral of (3u+1)du/u
= integral of du/u + 3du
= lnu +3u + C
= ln|x-1| +3(x-1) + C
= ln|x-1| + 3x + C (combine the -3 and C into one constant term)
or
(3x-2)/(x-1)
= 3x/(x-1) + -2/(x-1) let u = x-1, du=dx
= 3(u+1)/u -2/u
= 3u/u +3/u -2/u
=3 +1/u
integral of 3du + du/u
= 3u + ln|u| + C
=3(x-1) + ln|x-1| + C
=3x -3 + ln|x-1| + C
= 3x + ln|x-1| + C