
Yefim S. answered 04/23/22
Math Tutor with Experience
f(x,y) = x2 + y2 - 52 = 0
Lagrange function: L(x, y, λ) = (x + 3)2 + (y - 2)2 - λ(x2 + ,y2 - 52)
∂L/∂x = 2(x + 3) - 2λx = 0; ∂L/∂y = 2(y - 2) - 2λy = 0; ∂L/∂λ = - x2 - y2 + 52 = 0;
x = 3/(λ - 1); y = 2/.(1 - λ); 9/(λ - 1)2 + 4/(λ - 1)2 = 52; (λ - 1)2 = 1/4; λ = 3/2 or λ = 1/2
λ = 1/2, then x = - 6; y = 4 Point (- 6, 4) distance: d = [(- 6 + 3)2 + (4 - 2)2]1/2 = √13 min
λ = 3/2; then x = 6; y = - 4. Point (6, - 4); distance d = [( 6 + 3)2 + (- 4 - 2)2]1/2 = 3√13 max