
Yefim S. answered 03/18/22
Math Tutor with Experience
(a) fx = 2xy - 2y + 2x - 2 = 0 ; f'y = x2 - 2x + 2y - 1 = 0;
(x - 1)(y + 1) = 0; x = 1; 1 - 2 + 2y - 1 = 0; y = 1 (1, 1); y = - 1; x2 - 2x - 3 = 0; (x - 3)(x + 1) = 0; x =3 or x = -1
(3, - 1); (- 1, - 1) and (1, 1) are critical points
(b) fxx = 2y + 2; fyy = 2; fxy = 2x - 2
Point (3, - 1): fxx = 0, fyy = 2, fxy = 4; Δ = 0·2 - 42 = - 16 < 0; at (3, - 1) is saddle point
Point (-1, - 1): fxx = 0, fyy = 2, fxy = - 4; Δ = 0·2 - 16 = - 16 < 0 at (- 1, - 1) is saddle point
Point(1, 1): fxx = 4 > 0, fyy = 2, fxy = 0; Δ = 4·2 - 02 = 8 > 0; at (1, 10 is local minimum