Raymond B. answered 03/14/22
Math, microeconomics or criminal justice
Sn = n/2(a+L) where n=number of terms, a=1st term, L=last term, Sn = sum
3000 = (n/2)(200+550) = (n/2)(750
6000=n(750)
n = 6000/750 = 8 days to get 3000 tickets sold
200
+250 total 450 on day 2
+300 total 750 day 3
+350 total 1100 day 4
+400 total 1500 day 5
+450 total 1950 day 6
+500 total 2450 day 7
+550 total 3000 day 8
8 days to sell 3,000
200+250 + ...+ 500+ 550
subtract 200 from each term
50+100 + ...+ 300+ 350
divide each term by 50
1+2+ ...+ 6+7
sum them to get 7(8)/2 = 28
28x50 = 1400
add 200 for each term = 8x200 = 1600
1400+1600 = 3000
n(n-1)/2 =7(8)/2 = 28
50n(n+1)/2= 50(28) =1400
200n =200(8)= 1600
200n + 50n(n-1)/2 = 3000
solve for n to get 8
4n+n(n-1)/2 =60
7n +n^2 +n = 120
n^2 + 7n -120= 0
(n-8)(n+15) = 0
n = 8
sum of the arithmetic sequence is either Sn =(n/2)(a+L) or
an +d(n)(n-1)/2 = Sn
a=1st term, d= common difference, n=number of terms
200(8)+50(8)(7)/2 = 3000
1600+1400 = 3000
a=1st term
an +(a/4)n(n+1)/2 = 3000