
Yefim S. answered 03/12/22
Math Tutor with Experience
a) hx(x,y,z) = 2/√x; hy(x,y,z) = 2y/(y2 + z2 + 1); hz(x,y,z) = 2z/(y2 + z2 + 1); At point (1,0,-1) hx = 2, hy = 0; hz = -1. Wector gradient gradh = <2,0,-1>. Unit vector in direction of vector u = <-1/3,2/3,2/3>
So directional derivative is: <2,0,-1>·<-1/3,2/3,2/3> = -2/3 - 2/3 = -4/3
(b)dh/dt = hx·xt + hyyt + hzzt = 2et/2 + 2tant/(tan2t + (t3 - t - 1)2 + 1)sec2t + 2(t3 - t - 1)(3t2 - 1)/(tan2 +
(t3 - t2 - 1)2 + 1)