Given:
I = ∫ dx / ( x * √( 36 + x2 )
Find:
I(x) = ?
Solution:
x = 6 sinh u
dx = 6 cosh u
x2 = 36 sinh2 u
36 + x2 = 36 ( 1 + sinh2 u ) = 36 cosh2 u
√( 36 + x2 ) = 6 cosh u
I = ∫ 6 cosh u du / ( 6 sinh u * 6 cosh u)
I = 1/6 ∫ csch u du
I = 1/6 ln| tanh( u / 2 ) | + C
From searching online:
tanh( x / 2 ) = ( cosh x - 1 ) / sinh x
∴ tanh( u / 2 ) = ( √( 36 + x2 ) / 6 - 1 ) / ( x / 6 )
tanh( u / 2 ) = ( √( 36 + x2 ) - 6 ) / x )
∴ I = 1/6 ln| ( [ √( 36 + x2 ) - 6 ) ] / x ) | + C
∴ I = 1/6 * [ ln| [ √( 36 + x2 ) - 6 ] - ln| x | ] + C = 1/6 * ln| ( [ √( 36 + x2 ) - 6 ) ] / x ) | + C
I hope this helps! Message me in the comments if you have any questions, comments, or concerns on the solution I did above!