Nicole G. answered 19d
PhD Candidate in Molecular Biosciences with 7+ Years of Teaching Exp.
Answers:
A)
x̄ = 1272 A.D.
s = 39 yr
B)
90% CI: (1248 A.D., 1296 A.D.)
Work:
A) Sample mean
Sum of values:
sum x = 1271+1187+1292+1250+1268+1316+1275+1317+1275 = 11451
Mean:
x̄ = 11451/9 =1272.3333
Rounded to nearest whole number: x̄ = 1272 A.D.
A) Sample standard deviation
formula: sqrt((sum(x - x̄)2/(n-1))
| x | x − x̄ (exact) | x − x̄ (decimal) | (x − x̄)² (exact) | (x − x̄)² (decimal) |
| 1271 | −4/3 | −1.3333 | 16/9 | 1.7778 |
| 1187 | −256/3 | −85.3333 | 65536/9 | 7281.7778 |
| 1292 | 59/3 | 19.6667 | 3481/9 | 386.7778 |
| 1250 | −67/3 | −22.3333 | 4489/9 | 498.7778 |
| 1268 | −13/3 | −4.3333 | 169/9 | 18.7778 |
| 1316 | 131/3 | 43.6667 | 17161/9 | 1906.7778 |
| 1275 | 8/3 | 2.6667 | 64/9 | 7.1111 |
| 1317 | 134/3 | 44.6667 | 17956/9 | 1995.1111 |
| 1275 | 8/3 | 2.6667 | 64/9 | 7.1111 |
Add the squared deviations:
1.7778 + 7281.7778 + 386.7778 + 498.7778 + 18.7778 + 1906.7778 + 7.1111 + 1995.1111 + 7.1111
= 12104.0000
Degrees of freedom: df=n-1
df=9-1=8
Sample variance:
s2 = 12104/8 =1,513
Standard Deviation:
s = sqrt(1513) =38.8973
Rounded to nearest whole number:
s=39 years
(B) 90% confidence interval for the population mean
degrees of freedom: df= n-1
9-1=8
Standard error: SE= (s/sqrt(n))
38.8973/sqrt(9)=12.9658
Margin of error: ME = t(SE)
1.8595(12.9658)=24.1105
Confidence interval = x̄ ± ME
1272.3333 ± 24.1105 = (1248.2229, 1296.4438)
Round to nearest whole number:
lower limit = 1248 A.D.
upper limit = 1296 A.D.