
Yefim S. answered 01/14/22
Math Tutor with Experience
Let find curlF = det{(i j k) (∂/∂x ∂/∂y ∂/∂z) (2xz + y2 2xy x2 + 3z2)] = (0)i - (2x - 2x)j + (2y - 2y) =k = 0.
So, field F is potential field.
Let potential of field is G(x,y,z); ∂G/∂x = 2xz + y2; G(x,y,z) = ∫(2xz + y2)dx = x2z + y2x + h(y,z);
∂G/∂y = 2yx + ∂h(y,z)/∂y = 2xy; ∂h(y,z)/∂y = 0; h(y,z) = k(z) + C;
G(x,y,z) = x2z + y2x + k(z) + C; ∂G/∂z = x2 + k'(z) = x2 + 3z2; k'(z) = 3z2; k(z) = ∫3z2dz = z3 + D
G(x,y,z) = x2z + xy2 + z3 + D, D is arbitrary constant.
∫CFdR = ∫C∇GdR = G(B) - G(A);
A = R(0) = (0,1, -1); B = R(1) = (1, 2, 1). ∫CFdR = (1 + 4 + 1 + D) - (-1 + D) = 7