We can use the double-angle formula for cosine: cos(2Θ) = cos2Θ - sin2Θ, so sec(2Θ) = 1 / (cos2Θ - sin2Θ).
We'll manipulate the right-hand side of the given identity until it is the expression above for sec(2Θ):
cosΘ / [cosΘ + sinΘ] + sinΘ / [cosΘ - sinΘ] Multiply each fraction top and bottom by the denom. of other:
= cosΘ [cosΘ - sinΘ] / [cosΘ - sinΘ][cosΘ + sinΘ] + sinΘ[cosΘ + sinΘ] / [cosΘ + sinΘ][cosΘ - sinΘ]
= [cos2Θ - sinΘcosΘ + sinΘcosΘ + sin2Θ] / (cos2Θ - sin2Θ)
= [cos2Θ + sin2Θ] / (cos2Θ - sin2Θ)
= 1 / (cos2Θ - sin2Θ)
= 1 / cos(2Θ)
= sec2Θ ◊