Christian L. answered • 12/07/21

Medical Graduate tutor in Math, Physics, Chemistry, and Biology

2n+10= 1/6n -7

"more than" is addition in this problem and separates the variable from the free integer 10.

Christian L. answered • 12/07/21

Tutor

5
(10)
Medical Graduate tutor in Math, Physics, Chemistry, and Biology

2n+10= 1/6n -7

"more than" is addition in this problem and separates the variable from the free integer 10.

Amanda K. answered • 12/08/21

Tutor

5
(4)
Certified and Experienced Elementary and Special Education Teacher

Let's break this down:

2 times a number would be 2n.

Then more than 2 times a number would be 10+2n

One-sixth the same number would be 1/6n

one-sixth the number decreased by 7 would be 1/6n-7

Let's put this all together:

10+2n=1/6n-7

So the first phrase we encounter is 10 more, which means that we have "10 + ". Next, we have two times a number n and two times n can be written as "2n". So thus far we have 10 added to 2n or "10 + 2n". Next, we are told that this expression equals 1/6th of the number decreased by 7. 1/6th of the number n can be written as "(1/6)n" and decreased by every means that we need to subtract seven from this value. So our final equation will be

10 + 2n = (1/6)n - 7.

Ask a question for free

Get a free answer to a quick problem.

Most questions answered within 4 hours.

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.