Given:
f(2) = 2
f'(2) = 1
g(x) = f(x)•ln(x)
Derive g(x), using the Product Rule:
g'(x) = f'(x)•ln(x) + f(x)/x
(i)
If x = 2, then:
g'(2) = f'(2)•ln(2) + f(2)/2
g'(2) = f'(2)•ln(2) + f(2)/2
Substitute:
g'(2) = 1•ln(2) + 2/2
g'(2) = ln(2) + 1
(ii)
G(x) = g(f(x))
Using the Chain Rule:
G'(x) = g'(f(x))•f'(x)
If x = 2, then:
G'(2) = g'(f(2))•f'(2)
Substitute:
G'(2) = g'(2)•1
G'(2) = ln(2) + 1
Jake L.
Very clearly explained! Tysm!10/31/21