
Dayv O. answered 10/24/21
Caring Super Enthusiastic Knowledgeable Trigonometry Tutor
let's say the given is just cos(a) value, and from sin(a)=+/-√(1-cos2(a)) you have +/- the sin value.
finding cos(8a) can be complicated since cos-1(k)=(+/-)a+2πn,
if cos(a)=k,,,, cos(8a) could be cos(8*-a) or cos( 8*a)
1 + cos(8a) = 1 + cos[2(4a)] = 2cos2(4a)
=2*(cos2(2a)-sin2(2a))2
=2*(cos4(2a)-2sin2(2a)cos2(2a)+sin4(2a))
=2*((cos2(a)-sin2(a))4-(4*sin(a)cos(a))2*(cos2(a)-sin2(a))2+(2*sin(a)cos(a))4)
since all sin(a) are squared or to the fourth power the +/- ambiguity for sin(a)=+/-√(1-cos2(a))
can be resolved by choosing either.
sin2(4a)=(2*sin(2a)cos(2a))2
=(2*(2*sin(a)cos(a))*(cos2(a)-sin2(a)))2
as can be seen, the ambiguity for cos(a)=+/-√(1-sin2(a))
is not of concern since cos(a) is alsways raised to even poower.
agian, if given sin(a)=k then a=sin-1(k)+2πn or a=π-sin-1(k)+2πn
example sin(π/18)=.173, given sin(a)=.173, a=π/18 or a=17π18
so sin-1(k) cannot just be multiplied by 4.