If cos-1 u = φ then cos φ = u . But [sin φ]2 +[ cosφ ]2 = 1 ⇒ [sin φ]2 = 1 - [ cosφ ]2
Then sin φ = √ {1 - [ cosφ ]2} and since cos φ = u Then sin φ = √( 1- u2).
In an exact similar manner
If sin-1 v = θ then sin θ= v ⇒ cosθ = √( 1- v2)
Then cos [ cos-1 u + sin-1 v ] = cos [φ +θ] = cos φ cos θ - sin φ sinθ = u √( 1- v2) - v √( 1- u2) .
Reese L.
where do the square roots come from?10/15/21