
Bradford T. answered 09/21/21
MS in Electrical Engineering with 40+ years as an Engineer
a)
F(x) = 30/(.6sin(t)+cos(t))
let u = .6sin(t)+cos(t) du/dt = .6cos(t)-sin(t)
F(u) = 30/u
F'(u) -30/u2 du/dt
F'(t) = (-30/(.6sin(t)+cos(t))2) (.6cos(t)-sin(t)) = 30(sin(t)-.6cos(t))/(.6sin(t)+cos(t))2
b)
Only need to set the numerator to zero and solve for t.
30(sin(t)-.6cos(t)) = 0
sin(t) = .6cos(t)
tan(t) = .6
t = tan-1(.6) ≈ 30.96°