
Jacob C. answered 07/20/21
Adaptive Math and Physics Tutor
We begin by using the addition formula for the sin() function.
k·sin(x + φ) = k·sin(x)cos(φ) + k·sin(φ)cos(x)
k·sin(x + φ) = k·cos(φ)sin(x) + k·sin(φ)cos(x)
From this, we see that k·cos(φ) = 5.6 and k·sin(φ) = 1.2 must be true. Simple division shows that
(k·sin(φ))/k·cos(φ) = tan(φ)
(k·sin(φ))/k·cos(φ) = 1.2/5.6
Then, tan(φ) = 1.2/5.6 so φ = tan-1(1.2/5.6) ≈ 12.09°. Knowing φ, we can determine k using k·sin(φ) = 1.2 such that:
k·sin(φ) = 1.2
k = 1.2/sin(φ)
k = 1.2/sin(tan-1(1.2/5.6))
k ≈ 5.73
Thus, k ≈ 5.73 and φ ≈ 12.09°.